Ch. 4: Basic Estimation Techniques

4.1 The Simple Linear Regression Model

Parameters: the coefficients in an equation that determine the exact mathematical relation among the variables.
Parameter estimation: the process of finding estimates of the numerical values of the parameters of an equation.

Regression analysis: a statistical technique for estimating the parameters of an equation and testing for statistical significance.

Regression analysis: is a technique used to determine the mathematical relation between a dependent

 variable and one or more explanatory variables.

Y = a + bX

Dependent variable (Y): the variable whose variation is to be explained.

Explanatory variable(s) (X): The variables that are thought to cause the dependent variable to take on different values.

Intercept parameter (a): the parameter that gives the value of Y at the point where the regression line crosses the Y-axis.

Slope parameter (b): the slope of the regression line, b = ∆Y/∆X, or the change in Y associated with a one-unit change in X.

A Hypothetical Regression Model

Suppose that the true (or actual) relation between sales (S) and advertising expenditures (A) is

S = 10,000 + 5A
True (or actual) relation: true or actual underlying (fundamental) relation between Y and X that is
unknown to the researcher but is to be discovered by analyzing the sample data.
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The Random Error Term 

Example:
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Because of these random effects, the level of sales for a firm cannot be exactly predicted.

The regression equation shows only the average or expected level of sales when a firm spends a given amount on advertising.

The exact level of sales for any particular travel agency (such as the ith agency) can be expressed as

Si = 10,000 + 5Ai + ei
Random error term: an unobservable term added to a regression model to capture the effects of all the minor, unpredictable factors that affect Y but cannot reasonably be included as explanatory variables.

Because the true regression line is unknown, the first task of regression analysis is to obtain estimates of a and b.

Relation:
The simple linear regression model relates a dependent variable Y to a single independent explanatory variable X in a linear equation called the true regression line:

Y = a + bX

 where a is the Y-intercept, and b is the slope of the regression line (ΔY/ΔX).

The regression line shows the average or expected value of Y for each level of the explanatory variable X.

4.2 Fitting a Regression Line 

Time-series: a data set in which the data for the dependent and explanatory variables are collected over time for a specific firm.

Cross-sectional: a data set in which the data on the dependent and explanatory variables are collected from many different firms or industries at a given point in time.

The purpose of regression analysis is twofold (double): (1) to estimate the parameters (a and b) of the true regression line and (2) to test whether the estimated values of the parameters are statistically significant.
To estimate the parameters, of the regression equation, an analyst first should collect data on the dependent and explanatory variables (Y and X).
To show how the parameters are estimated, we refer once again to the Tampa Bay Travel Agents' Association. Suppose an association asks seven agencies (out of the total 475 agencies located in the Tampa–St. Petersburg area) for data on their sales (S) and advertising expenditures (A) during the month of January. These data (a cross-sectional data set) are presented in Table 4.2 and are plotted in a scatter dia​gram in Figure 4.2.
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Data indicates a positive relation between S and A; the higher the level of ad​vertising, the higher (on average) the level of sales.

The objective of “regression analysis” is to find a straight line that best fits the scatter of data points …. since fit​ting a line through a scatter of data points simply involves choosing values of the parameters a and b.
Scatter diagram: A graph of the data points in a sample.

Population regression line: the equation or line representing the true (or actual) underlying relation between the dependent variable and the explanatory variable(s).
Sample regression line: the line that best fits the scatter of data points in the sample and provides an estimate of the population regression line.
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Since the sample contains information on only 7 out of total 475 travel agencies, it is highly unlikely that the sample regression line will be exactly the same as the true (or population) regression line.

The sample regression line that best fits the seven sample data points presented in Table 4.2 is given by
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where
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 is the fitted or predicted value of S.

Regression analysis uses the method of least-squares to find the sample regression line.
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Method of least-squares: a method of estimating the parameters of a linear regression equation by finding the line that minimizes the sum of the squared distances from each sample data point to the sample regression line.
The sample data point shows: advertising expenditures of $7,000 gives sales of $60,000 (firm G).
But the sample regression line/equation indicates:

$7,000 (advertising expenditures) will result in $46,376 of sales (11,573 + 4.9719 × 7,000). 
The $46,376 is the fitted or predicted value of sales (
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): is the difference between actual sales and fitted (predicted) value. 
 
 It is the residual (e) … the vertical distance between the data point and the fitted regression line (denoted e, in Figure 42).
The residual for the data point ($7,000, $60,000) is: $13,624 (= $60,000 - $46,376). 
Regression analysis selects a straight line (i.e., chooses a and b) that minimizes the sum of the squared residuals (
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) which is why it is often referred to as least-squares analysis.
Fitted or predicted value: the predicted value of Y (denoted ie) associated with a particular value of X, which is obtained by substituting that value of X into the sample regression equation.

Residual: the difference between the actual value of Y and the fitted (or predicted) value of Y. (Yi-
[image: image11.wmf]i

Y

ˆ

).

Estimators: the formulas by which the estimates of parameters are computed.
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Estimates: the estimated values of parameters obtained by substituting sample data into estimators.
Many computer software programs can compute least-squares estimates for linear regression analysis
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4.3 Testing for statistical significance

Because the estimated values of the parameters (
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 and 
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) are unlikely to be the true values (a and b), it is possible that the parameters could truly be equal to 0 even though the computer calculates a parameter estimate that is not equal to 0.
Statistically significant: there is sufficient evidence from the sample to indicate that the true value of the coefficient is not 0.
Fortu​nately, statistical techniques provide a tool for making probabilistic state​ments about the true values of the parameters. This tool is called hypothesis testing.
Hypothesis testing: a statistical technique for making a probabilistic statement about the true value of a parameter.
Our primary emphasis will be to show how to test the hy​pothesis that Y is truly related to X. 

If Y is indeed related to X, the true value of the slope parameter b will be either a positive or a negative number.

Thus, the explanatory vari​able X has a statistically significant effect on the dependent variable Y when b≠0.
we will introduce and explain a statistical test (called a t-test) that can be used to make a probabilistic statement about whether Y is truly related to the explanatory variable X—that is, whether the true value of the parameter b is zero.

The Relative Frequency Distribution for 
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The necessity of testing for statistical significance arises because the ana​lyst does not know the true values of a and b—they are estimated from a random sample of observations on Y and X.
The least-squares estimate of the slope parameter b from the sample is 4.9719.

Suppose you collected a new sample by ran​domly selecting seven other travel agencies and use their sales and advertising ex​penditures to estimate b. The estimate for b 
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will probably not equal 4.9719 for the second sample. Therefore, 
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 is a ran​dom variable—its value varies in repeated samples.
The relative frequency with which
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takes on different values provides informa​tion about the accuracy of the parameter estimates.
Even though researchers sel​dom have the luxury of taking repeated samples, statisticians have been able to determine theoretically the relative frequency distribution of values that b would take in repeated samples.
The following figure shows (the relative frequency distribution) for
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… when the true value of b is equal to 5.
This distribution is also called the probability density function (pdf), by statisticians.

Relative frequency distribution: the distribution (and relative frequency) of values h can take because observations on Y and X come from a random sample.
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Even though the probability of drawing a sample for which 
[image: image23.wmf]b

ˆ

exactly equals 5 is extremely small, the average (mean or expected) value of all possible values of b is 5.

The estimator 
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is said to be an unbiased esti​mator if the average (mean or expected) value of the estimator is equal to the true value of the parameter.

Unbiased estimator: an estimator that produces estimates of a parameter that are on average equal to the true value of the parameter.

The smaller the dispersion (the spread) of 
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around the true value, the more likely it is that an estimate of 
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 is close to the true value. In other words, the smaller the variance of the distribution of 
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, the more accurate estimates are likely to be.
The square root of the [variance of 
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is called the standard error (
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) of the estimate.
The Concept of a t-Ratio
When we regressed sales on advertising expenditures for the seven travel agencies in Table 4.2, 
we obtained an estimate of b = 4.9719. 
Since 4.9719 is not equal to 0, this seems to suggest that the level of advertising does indeed affect sales.
Even though 4.9719 is greater than 0, it is possible that the true value of b is 0. 
In other words, the analyst runs some risk that the true value of b is 0 even when 
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is not calculated to be 0.

The probability of drawing a sample for which the estimate of b is much larger than 0 is very small when the true value of b is actually 0.

How large does 
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have to be for an analyst to be quite sure that b is not really 0 (i.e., advertising does play a significant role in determining sales)? 
The answer to this question is obtained by performing a hypothesis test.
The hypothesis we test is: b = 0.

Statisticians use t-test to make a probabilistic statement about the likelihood that the true parameter value b is not equal to 0.

Using the t-test, it is possible to deter​mine statistically how large 
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must be in order to conclude that b is not equal to 0. 

In order to perform a t-test for statistical significance, we form what statisticians call a t-ratio:

t-test: a statistical test used to test the hypothesis that the true value of a parameter is equal to 0 (b = 0).

t-ratio: the ratio of an estimated regression parameter divided by the standard error of the estimate.
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The numerical value of the t-ratio is called (t-statistic).
The larger the absolute value of the t-ratio, the more confident one can be that the true value of b is not 0. Why?

   …

The larger the numerator of the t-ratio, the less likely it is that b really does equal 0.
Turning now to the denominator of the t-ratio, recall that 
[image: image37.wmf]b

S

ˆ

, the standard error of the estimate, measures the accuracy of the estimate of b. The smaller 
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(and thus the more accurate
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is), the smaller the error in esti​mation is likely to be.
Consequently, the farther from 0 
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is (i.e., the larger the numerator) and the smaller the standard error of the estimate (i.e., the smaller the denominator), the larger the t-ratio, and the more sure we are that the true value of b is greater than 0.

Performing t-Test for Statistical Significance
If the calculated t-statistic or t-ratio is greater than the critical value of t, then the hypothesis (b=0) is rejected in favor of the alternative one (b≠ 0).

When the calculated t-statistic exceeds the critical value of t, b is sig​nificantly different from 0, or, equivalently, b is statistically significant.
If the hypothesis that b = 0 cannot be rejected, then the sample data are indicating that X, the explanatory variable for which b is the coefficient, is not related to the de​pendent variable Y (∆Y/∆X=0).

Critical value of t: the value that the t-statistic must exceed in order to reject the hypothesis that b = 0.
Type I error: error in which a parameter estimate is found to be statistically significant when it is not.

The probabil​ity of making Type I error when performing a t-test is the level of significance of the t-test.

Level of significance: the probability of finding the parameter to be statistically significant when in fact it is not.
Traditionally, either a 0.01, 0.02, 0.05, or 0.10 level of significance are selected
The level of confidence = 1- the level of significance, 
it gives the probability that you will not make (Type I error).
Level of confidence: The probability of correctly failing to reject the true hypothesis that b=0; equals one minus the level of significance.

If the level of sig​nificance chosen for conducting a t-test is 0.05 (5 percent), then the level of confi​dence for the test is 0.95 (95 percent), and you can be 95 percent confident that the t-test will correctly indicate lack of significance.

Degrees of freedom: (n - k) the number of observations in the sample minus the number of parameters being estimated by the regression analysis.

· n = number of observations

· k = number of parameters estimated

(In the advertising example, d.f. = 7 - 2 = 5 degrees of freedom, since we have seven observations and estimated two parame​ters, a and b.)

Principle:
In order to test for statistical significance of a parameter estimate 
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[image: image42.wmf]b

S

b

t

ˆ

ˆ

=

) 
where 
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is the standard error of the estimate 
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Next, for the chosen level of significance (say 5%), find the critical t-value in the t-table at the end of the text. Choose the critical t-value with n-k degrees of freedom for the chosen level of significance. 
If the absolute value of the t-ratio is greater (less) than the critical t-value, then 
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is (is not) statistically significant.

Returning to the advertising example, we now test to see if 4.9719, the esti​mated value of b, is significantly different from 0.
* The standard error of
[image: image46.wmf]b

ˆ

, 
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, is equal to 1.23. Thus, t-statistic is equal to (4.9719/1.23=4.04).
Compare 4.04 to the critical value of t, using a 5 percent significance level (page ….) (a 95 percent confidence level). The critical value of t for 5 d.f. and a 0.05 level of signifi​cance is 2.571.
Since 4.04 is larger than 2.571, we reject the hypothesis that b is 0 and can now say that 4.9719 (b) is significantly different from 0. This means that adver​tising expenditure is a statistically significant variable in determining the level of sales.
Using p-Values to Determine Statistical Significance
p-value: the exact level of significance for a test statistic, which is the probability of finding significance when none exists.
The probability of committing a Type I error—finding signifi​cance when none exists.

In the previous example, t-ratio was 4.04 (significant at 5%). 
The p-value for the calculated t-ratio 4.04 (= 4.9719/1.23) is 0.010.

Rather than saying b is statistically sig​nificant at the 5% level of significance (or the 95 percent level of confidence), using the p-value: in the previous example, 
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 is statis​tically significant at exactly the 1 percent level of significance.

4.4 Evaluation of the regression equation

Researchers often wish to evaluate the complete estimated regression equation, Y = 
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X
The Coefficient of Determination (R2)
Coefficient of determination (R2): the fraction of total variation in the dependent variable explained by the regression equation.
Relation:

The coefficient of determination (R2) measures the fraction of the total variation in Y that is explained by the variation in X. R2 ranges in value from 0 (the regression explains none of the variation in Y) 
      to 1 (the regression explains all         the variation in Y). 
A high R2 indicates Y and X are highly correlated and the scatter diagram tightly fits the sample regression line.
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The F-Statistic

F-statistic: A statistic used to test whether the overall regres​sion equation is statistically significant.
Relation:
The F-statistic is used to test whether the regression equation as a whole explains a significant amount of the variation in Y.
This test involves comparing the F-statistic to the critical F-value with k–1 (the number of independent vari​ables) and n–k degrees of freedom and the chosen level of significance. 

If the F-statistic exceeds the critical F-value, the regression equation is statistically significant.
4.5 Multiple Regression

Multiple regression models: regression models that use more than one explanatory variable to explain the variation in the dependent variable.

Y = a + b X + c W + d Z

where Y is the dependent variable; a is the intercept parameter; X, W, and Z are the explanatory variables; and b, c, and d are the slope parameters for each of these explanatory variables.

Coefficient for each explanatory variable measures the change in the dependent variable associated with a one-unit change in that explanatory variable

4.6 Nonlinear Regression Analysis

(A) Quadratic Regression Models
Y = a + b X + cX 2
If b is negative and c is positive, the quadratic function is U-shaped. 

If b is positive and c is negative, the quadratic function is ∩-shaped.

In order to estimate the three parameters of the quadratic relation (a, b, and c), the equation must be transformed into a linear form that can be estimated using linear regression analysis. This task is accomplished by creating a new variable Z, defined as Z = X 2, then substituting Z for X 2 to transform the quadratic model into a linear model:

Y = a + bX + cX 2
= a + bX + cZ
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(B) Log-Linear Regression Models

Log-linear regression model: a nonlinear regression model of the form Y = aXbZc
This form is useful because the parameters b and c are elasticities:
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Taking the logarithm of the function Y = aXbZc results in:
ln Y = (ln a) + b(ln X) + c(ln Z)
or
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The intercept parameter estimate provided by the computer is not a … it is ln a. 

To obtain a, we must take the antilog of the parameter estimate 
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The scatter diagram in Panel A suggests that a curvilinear model will fit these data bet​ter than a linear model.

Thus, the curvilinear model in Panel A is transformed into an equivalent model that is linear when the variables are expressed in logarithms.

Panel B of Figure 4.6 illustrates why this model is called a log-linear model.
No​tice that when the data points in Panel A are converted to logarithms (ln Y and ln X), the natural logarithms of Y and X exhibit a linear relation, as indicated by the scatter diagram shown in Panel B. 
The estimated log-linear regression equation is plotted in Panel B to show you how a straight line fits the natural logarithms of Y and X.
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To obtain the parameter estimates in for the nonlinear equation Y=aXb, note that the slope parameter on InX is also the exponent on X in the nonlinear equation (b=-0.96). Because b is an elasticity, the estimated elasticity is (-0.96). 
Thus a 1% (10%) increase in X results in a 0.96% (9.6%) decrease in Y.

To obtain 
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, we take the antilog of the estimated value of 
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So, Regression analysis can be extremely helpful, and it's not as difficult as its name suggests."' Regression analysis is simply a tool to provides the information necessary for a manager to make decisions that maxi​mize profits.
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